This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SYNTHESIS AND REACTIONS OF MIXED HALIDE DIALKYLDITHIOPHOSPHATE DERIVATIVES OF BISMUTH(III)

H. P. S. Chauhan^a; G. Srivastava^a; R. C. Mehrotra^a

^a Department of Chemistry, University of Rajasthan, Jaipur, India

To cite this Article Chauhan, H. P. S. , Srivastava, G. and Mehrotra, R. C.(1983) 'SYNTHESIS AND REACTIONS OF MIXED HALIDE DIALKYLDITHIOPHOSPHATE DERIVATIVES OF BISMUTH(III)', Phosphorus, Sulfur, and Silicon and the Related Elements, 17: 2, 161-167

To link to this Article: DOI: 10.1080/03086648308077537 URL: http://dx.doi.org/10.1080/03086648308077537

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND REACTIONS OF MIXED HALIDE DIALKYLDITHIOPHOSPHATE DERIVATIVES OF BISMUTH(III)

H. P. S. CHAUHAN, G. SRIVASTAVA and R. C. MEHROTRA*

Department of Chemistry, University of Rajasthan, Jaipur 302 004, India

(Received June 2, 1983)

Mixed chloride dialkyldithiophosphates of bismuth(III), $[(RO)_2PS_2]_nBiCl_{3\cdot n}$ $(n=1,2; R=Et, Pr^n, Pr^i$ and $Bu^i)$ have been synthesized for the first time by the reactions of bismuth trichloride with sodium diisopropyldithiophosphate or alternatively by co-disproportionation reactions of bismuth trichloride with bismuth tris (dialkyldithiophosphates) in different stoichiometric ratios in suitable organic solvents. Monohalobismuth bis (diisopropyldithiophosphates) have also been synthesized by the cleavage reactions of bismuth tris (dialkyldithiophosphates) with bromine or iodine in 2:1 molar ratio.

These new derivatives have been characterized by elemental analysis, molecular weight determinations (both cryoscopic and ebullioscopic) as well as spectroscopic (IR, ¹H NMR and ³¹P NMR) studies. On the basis of these data chelated structures with bidentate dialkyldithiophosphate groups have been proposed for these monomeric derivatives. Hydrolysis reactions of some of these compounds have also been studied.

INTRODUCTION

Amongst the ligands involving both phosphorus and sulphur, dialkyl-dithiophosphates have been investigated extensively. These ligands exhibit bidentate¹⁻³ as well as monodentate⁴⁻⁶ behaviour and form stable complexes with transition¹⁻⁴ as well as nontransition^{1,5,6} elements. In spite of an extensive literature on derivatives of bismuth with sulphur ligands, ^{1,7,8} the studies on corresponding dialkyldithiophosphate derivatives seem to be limited. ^{1,2} A few tris derivatives [(RO)₂PS₂]₃Bi^{1,2,9-12} have been reported and studied by some of the spectroscopic techniques. The single crystal X-ray structure² of [(PrⁱO)₂PS₂]₃Bi has also been determined. Besides the synthetic and structural aspects, photometric properties¹³ and analytic applications¹³⁻¹⁵ of a few bismuth dialkyldithiophosphates have also been reported.

The mixed halide dialkyldithiophosphate derivatives of bismuth are still unknown. In view of the exciting chemistry of mixed halide dialkyldithiophosphate derivatives of arsenic(III)¹⁶ and antimony(III)¹⁶ and mixed halide dialkyldithiocarbamates of bismuth(III)¹⁷⁻¹⁹ it was considered worthwhile to synthesize a number of *tris* as well as mixed halide dialkyldithiophosphate derivatives of bismuth(III) and investigate their physicochemical properties.

RESULTS AND DISCUSSION

Bismuth tris(dialkyldithiophosphates) have been prepared by the reactions of bismuth trichloride (bismuth oxychloride dissolved in dilute hydrochloric acid) with

dialkyldithiophosphoric acids or their sodium or ammonium salts in 1:3 molar ratio:

BiCl₃ + 3(RO)₂PSSH
$$\rightarrow$$
 [(RO)₂PS₂]₃Bi + 3HCl
(R = Et, Prⁿ, Prⁱ and Buⁱ)
BiCl₃ + 3(RO)₂PSSM \rightarrow [(RO)₂PS₂]₃Bi + 3MCl

(When
$$M = Na$$
; $R = Et$, Pr^i and when $M = NH_4$; $R = Ph$)

All these exothermic reactions are quite facile and have been carried out in dilute hydrochloric acid and alcohol mixture. Bismuth *tris*(dialkyldithiophosphates) were immediately precipitated on adding the reactants.

Mixed chloride diisopropyldithiophosphates of bismuth have been synthesized by the reaction of bismuth trichloride with sodium diisopropyldithiophosphate in 1:2 and 1:1 molar ratio in acetonitrile

BiCl₃ + 2(PrⁱO)₂PSSNa →
$$[(Pr^iO)_2PS_2]_2$$
BiCl + 2NaCl↓
BiCl₃ + (PrⁱO)₂PSSNa → $[(Pr^iO)_2PS_2]$ BiCl₂ + NaCl↓

In view of the insolubility of bismuth trichloride as well as sodium dial-kyldithiophosphates in a number of suitable organic solvents (benzene, hexane, carbon tetrachloride, chloroform, ether etc.), most of the mixed chloride dialkyl-dithiophosphates of bismuth have been synthesized employing the co-disproportionation reactions between bismuth trichloride and bismuth tris(dial-kyldithiophosphates) in different (1:2 and 2:1) molar ratios:

BiCl₃ + 2[(RO)₂PS₂]₃Bi
$$\rightarrow$$
 3[(RO)₂PS₂]₂BiCl
2BiCl₃ + [(RO)₂PS₂]₃Bi \rightarrow 3[(RO)₂PS₂]BiCl₂

All the above reactions are quite facile and may be carried out in benzene or acetonitrile simply by stirring the reactants for about one hour at room temperature; however, the reaction mixture was heated moderately, to ensure the completion of the reactions.

Monohalobismuth bis(diisopropyldithiophosphates) have been synthesized by the cleavage reactions of bismuth tris(diisopropyldithiophosphate) with halogens (bromine or iodine) in 2:1 molar ratio:

$$2[(Pr^{i}O)_{2}PS_{2}]_{3}Bi + X_{2} \rightarrow 2[(Pr^{i}O)_{2}PS_{2}]_{2}BiX + [(Pr^{i}O)_{2}PS]_{2}$$

These reactions are also quite facile and are completed at room temperature in benzene/carbon tetrachloride solution simply by stirring the reactants for about one hour. The bis(diisopropylthiophosphoryl) disulphide and monohalobismuth bis(diisopropyldithiophosphates) so formed have been separated by washing the mixture with light petroleum (b.p., 60–80°C); the latter being less soluble remains insoluble in small amounts of light petroleum.

Other bismuth tris(dialkyldithiophosphates), $[(RO)_2PS_2]_3$ Bi $(R = Et, Pr^n)$ and Bu^i) also appear to react with halogens in a similar manner (disappearance of colour of bromine and iodine takes place in all the cases), but the expected products, monohalobismuth bis(dialkyldithiophosphates) and bis(dialkylthiophosphoryl) disulphides could not be separated in any case. Attempts to prepare dihalobismuth diisopropyldithiophosphates, by the reaction of bismuth tris(diisopropyl-

dithiophosphate) with halogens (bromine or iodine) in 1:1 molar ratio, were also made, but in these cases also the products could not be separated.

Most of these bismuth(III) dialkyldithiophosphates are yellow crystalline solids (Table I) with the exception of corresponding dinormalpropyldithiophosphate derivatives which are yellow viscous liquids and monoiodobismuth bis(diisopropyldithiophosphate) which is a brown red solid. These compounds are soluble in common organic solvents like benzene, hexane, carbon tetrachloride, chloroform, acetonitrile and alcohols. The tris derivatives are insoluble in water and can be crystallized from aqueous alcohols. Bismuth tris(dialkyldithiophosphates) are stable in aqueous as well as dilute hydrochloric acid media but in an excess of ammonia solution, these decompose to give insoluble bismuth oxide:

$$2[(RO)_2PS_2]_3Bi + 6NH_4OH \rightarrow Bi_2O_3 + 6(RO)_2PSSNH_4 + 3H_2O_3$$

The alcoholic solutions of mixed chloride dialkyldithiophosphates of bismuth on treatment with excess of water give bismuth oxide and bismuth *tris*(dialkyldithiophosphates):

$$6[(RO)_2PS_2]_2BiCl + 3H_2O \rightarrow 4[(RO)_2PS_2]_3Bi + Bi_2O_3 + 6HCl$$

 $3[(RO)_2PS_2]BiCl_2 + 3H_2O \rightarrow [(RO)_2PS_2]_3Bi + Bi_2O_3 + 6HCl$

The mixed halide dialkyldithiophosphate derivatives can be crystallized from acetonitrile or carbon tetrachloride—light petroleum (b.p., 60–80°C) mixture.

All the *tris* as well as mixed halide dialkyldithiophosphate derivatives of bismuth are monomeric in freezing as well as in refluxing benzene. These compounds could not be volatilized even under reduced pressure and tend to decompose at ~ 120°C.

The dichlorobismuth dialkyldithiophosphates on standing for a few days, even in a stoppered flask, are changed from light yellow to orange red and become partially insoluble in solvents like benzene and alcohols in which they were initially soluble. The compound $[(Pr^iO)_2PS_2]_2$ BiI also decomposes on warming a benzene or chloroform solution and also on slight exposure to atmosphere; the decomposition products could not be characterized.

IR spectra of these new derivatives have been recorded in the range $4000-200 \, \mathrm{cm^{-1}}$ and assignments of some important bands have been made on the basis of earlier reports. ^{1,3,5,10,20} The bands in the region $1030-950 \, \mathrm{cm^{-1}}$ and $850-755 \, \mathrm{cm^{-1}}$ are assigned to (P)—O—C and P—O—(C) stretching vibrations respectively. ²⁰ A sharp band due to $\nu(P=S)^{1,3,5}$ present in the region 690-640 cm⁻¹ in the spectra of corresponding free dialkyldithiophosphoric acids or their sodium or ammonium salts, is shifted towards lower side by $\sim 50 \, \mathrm{cm^{-1}}$; this shifting appears to be due to a strong bidentate chelation of ligands with bismuth. The bands of medium intensities present in the region $580-510 \, \mathrm{cm^{-1}}$ have been assigned to (P—S) asymmetric and symmetric vibrations. ^{3,5} The bands of medium intensities in the region $400-200 \, \mathrm{cm^{-1}}$ may be due to Bi—S¹⁰ and Bi—X (X = Cl, Br or I) stretching vibrations.

The PMR spectra (Table II) show the proton resonances due to the corresponding alkyl protons of dialkyldithiophosphate moieties. The coupling of α protons of alkyl groups with phosphorus is observed; in a few cases coupling of β proton of alkyl groups with phosphorus is also observed.

1 ABLE 1
Synthesis and physical properties of dialkyldithiophosphate derivatives of bismuth(III)

o .	Reac			Medium				D. commeth	1	
o .		Reactants (g)	Molar	of the	Product	Physical	Melting	Found	Sulphur	weight
_ .	V	В	ratio	reaction	(yield g; %)	state	ွင့	(Calcd.)	(Calcd.)	(Calcd.)
	2	3	4	s	9	7	∞	6	01	=
_	BiOCI	(EtO), PSSNa	1:3	HCl and	[(EtO), PS,], Bi	Yellow crystal-	55	26.98	25.42	752
	5.00	10.73		Alcohol	(11.42; 78)	line solid		(27.33)	(25.16)(25.16)(764)	.16)(764)
~	Bioci	(Pr"O), PSSH	1:3	:	[(Pr"O), PS, J, Bi	Yellow crystal-	I	24.44	23.37	825
	2:00	12.35			(15.28; 94)	line low		(24.62)	(22.66)	(848)
	Bi.O,	(Pr'O), PSSNa	9:1	:	(Pr'O), PS, 1, Bi	Yellow crystal-	89	24.24	22.93	862
	2.83	8.61			(9.72; 94)	line solid)	(24.62)	(22.66)	(848)
	Bi_2O_3	(Pr'O) ₂ PSSH	9:1	÷	$[(Pr'O)_2PS_2]_3B_1$	Yellow crystal-	89	24.31	22.41	<u> </u>
	3.28	9.05			(10.14; 85)	line solid		(24.62)	(22.66)	
. ~	BioCl	(Bu'O) ₂ PSSH	1:3	:	$[(Bu/O)_2PS_2]_3Bi$	Yellow crystal-	091	22.09	20.91	806
	2.00	13.96			(15.69; 88)	line solid		(22.40)	(20.62)	(932)
	BiOCI	(PhO) ₂ PSSNH ₄	1:3	:	$[(PhO)_2PS_2]_3Bi$	Yellow sticky	1	19.62	17.94	1
	0.38	1.32			(1.19; 77)	pilos		(19.85)	(18.27)	
_	BiCl ₃	(Pr'O) ₂ PSSNa	1:2	Benzene	$[(Pr'O)_2PS_2]_2BiCI$	Yellow crystal-	145	30.93	18.74	l
	1.12	1.68		Acetonitrile	(2.05; 86)	line solid		(31.15)	(19.11)	
	BiCl ₃	(Pr'O) ₂ PSSNa	- :	:	$\{(Pr'O)_2PS_2\}BiCI_2$	Yellow crystal-	138	41.92	12.78	}
	1.72	1.28			(2.03; 76)	line solid		(42.38)	(13.00)	
_	BiCl,	$[(EtO_2)PS_2]_3Bi$	1:2	Benzene	$[(EtO)_2PS_2]_2BiCl$	Yellow crystal-	85	33.31	21.06	603
	0.48	2.33			(2.81; 100)	line solid		(33.98)	(20.85)	(615)
_	BiCl ₃	$[(EtO)_2 PS_2]$, Bi	2:1	:	$[(EtO)_2PS_2]BiCl_2$	Yellow crystal-	82	45.24	40.4	1
	1.20	1.46			(2.55; %)	line solid		(44.93)	(13.79)	
	BiCl ₃	$[(Pr"O)_2PS_2]_3B_1$	1:2	÷	[(Pr"O)2PS2]2BiCl	Yellow viscous	1	31.87	18.84	692
	0.29	1.56			(1.57; 85)	liquid		(31.15)	(19.11)	(129)
	BiCl ₃	$[(Pr''O)_2PS_2]_3B_1$	2:1	:	[(Pr"O), PS,]BiCl,	Yellow viscous	1	42.98	12.65	S 204
	08.0	1.68			(1.56; 83)	liquid		(42.38)	(13.00)	(493)
	BiCl,	[(Pr'O) ₂ PS ₂] ₃ Bi	1:2	:	$[(Pr'O)_2PS_2]_2BiCI$	Yellow crystal-	145	30.44	18.87	654
	0.42	2.26			(2.64; 99)	line solid		(31.15)	(19.11)	(179)
_	BiCl,	$[(Pr'O)_2PS_2]_3Bi$	2:1	:	[(Pr'O) ₂ PS ₂]BiCl ₂	Yellow crystal-	138	43.14	12.77	473
	68.0	1.20			(1.58; 76)	line solid		(42.38)	(13.00)	(493)
	(BiCl ₃	[(Bu'O), PS,], Bi	1:2	÷	$[(Bu/O)_2PS_2]_2BiCI$	Yellow crystal-	110	29.23	19.82	707
	0.41	2.43			(2.83; 100)	line solid		(28.74)	(17.64)	(727)
	BiCl,	$[(Bu/O)_2 PS_2]_3 Bi$	2:1	Benzene	[(Bu/O), PS,]BiCl,	Yellow crystal-	8	40.80	11.75	507
	1.00	1.48			(2.44; 98)	line solid		(40.10)	(12.30)	(521)
_	$[(Pr'O)_2PS_2]_3Bi$	\mathbf{Br}_2	2:1	Carbon	$[(Pr'O)_2PS_2]_2BiBr$	Yellow crystal-	135	29.50	18.24	732
		0.35		tetrachloride	(2.25; 71)	line solid		(29.21)	(17.93)	(715)
	$[(Pr'O)_2PS_2]_3Bi$	I_2	7:1	Benzene	[(Pr'O), PS,], BiI	Red brown	130	29.03	15.99	1
	3.13	0.47			(1.24; 44)	crystaline		(27.37)	(16.80)	

TABLE II

1 H NMR spectral data for a few dialkyldithiophosphates of bismuth(III)

Sl. no.	Compound	Chemical shift (δ, ppm)
1	[(EtO) ₂ PS ₂] ₃ Bi	1.38, dt, 18 H (CH ₃); $J_{\text{CH}_3\text{CH}_2} = 7 \text{ cps}, J_{\text{POCCH}_3} = 1 \text{ cps}$
2	$[(\operatorname{Pr}^n\operatorname{O})_2\operatorname{PS}_2]_3\operatorname{Bi}$	4.23, dq, 12 H (CH ₂ O); $J_{\text{CH}_3\text{CH}_2} = 7 \text{ cps}$, $J_{\text{POCH}_2} = 10 \text{ cps}$ 0.81–1.16, t, 18 H (CH ₃) 1.45–2.01, m, 12 H (CH ₂)
3	$[(\operatorname{Pr}^{i}\operatorname{O})_{2}\operatorname{PS}_{2}]_{3}\operatorname{Bi}$	3.85–4.22, dt, 12 H (CH ₂ O) 1.10–1.20, d, 36 H (CH ₃) 4.30–4.95, m (7 peaks), 6 H (CHO)
4	$[(Bu^iO)_2PS_2]_3Bi$	0.80, d, 36 H (CH ₃); $J_{\text{CH}_3\text{CH}} = 6.5 \text{ cps}$ 1.52-2.05, m, 6 H (CH)
5	[(EtO) ₂ PS ₂] ₂ BiCl	3.73, dd, 12 H (CH ₂ O); $J_{\text{CHCH}_2\text{O}} = 6.5 \text{ cps}$, $J_{\text{POCH}_2} = 9 \text{ cps}$ 1.40, dt, 12 H (CH ₃); $J_{\text{CH}_3\text{CH}_2} = 7 \text{ cps}$, $J_{\text{POCCH}_3} = 1 \text{ cps}$ 4.28, dq, 8 H (CH ₂ O); $J_{\text{CH}_3\text{CH}_2} = 7 \text{ cps}$, $J_{\text{POCH}_2} = 10 \text{ cps}$
6	$[(\mathbf{Pr}^n\mathbf{O})_2\mathbf{PS}_2]_2\mathbf{BiCl}$	0.85–1.09, t, 12 H (CH ₃) 1.47–2.03, m, 8 H(CH ₂)
7	$[(Pr^iO)_2PS_2]_2BiCl$	3.90–4.29, dt, 8 H (CH ₂ O) 1.43, d, 24 H (CH ₃); $J_{\text{CH}_3\text{CH}} = 6 \text{ cps}$ 4.97, m (7 peaks), 4 H (CHO); $J_{\text{CH}_3\text{CH}} = 6 \text{ cps}$
8	$[(\mathbf{Pr}^i\mathbf{O})_2\mathbf{PS}_2]_2\mathbf{BiBr}$	1.44, d, 24 H (CH ₃); $J_{\text{CH}_3\text{CH}} = 6 \text{ cps}$
9	$[(Bu^iO)_2PS_2]_2BiCl$	4.98, m (7 peaks), 4 H (CHO); $J_{\text{CH}_3\text{CH}} = 6 \text{ cps}$ 0.81, d, 24 H (CH ₃); $J_{\text{CH}_3\text{CH}} = 7 \text{ cps}$ 1.52-2.06, m, 4 H (CH)
10	$[(Bu^iO)_2PS_2]BiCl_2$	3.80, dd, 8 H (CH ₂ O); $J_{\text{CHCH}_2\text{O}} = 6.5 \text{ cps}$, $J_{\text{POCH}_2} = 9 \text{ cps}$ 1.01, d, 12 H (CH ₃); $J_{\text{CH}_3\text{CH}} = 6.5 \text{ cps}$ 1.77–2.32, m, 2 H (CH) 4.14, dd, 4 H (CH ₂ O); $J_{\text{CHCH}_2\text{O}} = 6.5 \text{ cps}$, $J_{\text{POCH}_2} = 9 \text{ cps}$

d = doublet, dd = doubled doublet, dq = doubled quartet, dt = doubled triplet, m = multiplet and t = triplet.

TABLE III

31P NMR spectral data for a few dialkyldithiophosphate derivatives of bismuth(III)

Sl. no.	Compound	Proton decoupled 31 P chemical shift (δ, ppm)
I	[(EtO), PS,], Bi	95.5
2	$[(\mathbf{B}\mathbf{u}^i\mathbf{O})_2\mathbf{PS}_2]_3\mathbf{B}\mathbf{i}$	96.7
3	[(EtO) ₂ PS ₂] ₂ BiCl	93.0
4	$[(Pr^iO)_2PS_2]_2BiCl$	89.7
5	$[(\mathbf{Bu}^{i}\mathbf{O})_{2}\mathbf{PS}_{2}]_{2}\mathbf{BiCl}$	94.2
6	[(Bu ⁱ O) ₂ PS ₂]BiCl ₂	87.9

³¹P NMR spectral data (Table III) for only a few representative compounds could be recorded. In the proton decoupled spectra, only one ³¹P chemical shift for each compound in the range 87–97 ppm is obtained which indicates the bidentate²¹ behaviour of dialkyldithiophosphate ligands towards the bismuth in all these derivatives.

The above data indicate the bidentate nature of dialkyldithiophosphate groups in these newly synthesized, monomeric mixed halide dialkyldithiophosphate derivatives of bismuth. Considering the previously reported trigonally distorted octahedral structure² (by X-ray crystallographic data) of [(PrⁱO)₂PS₂]₃Bi and proposed structure of corresponding mixed halide dialkyldithiophosphate derivatives of arsenic(III) and antimony(III),¹⁶ the monohalobismuth bis (dialkyldithiophosphates) should contain a 5 coordinate bismuth atom and possess a distorted octahedral geometry with the stereochemically active lone pair occupying one of the positions. The corresponding dichlorobismuth dialkyldithiophosphates should contain a 4 coordinate bismuth atom and similarly possess a trigonal bipyramidal geometry. Efforts to obtain X-ray crystallographic data for a few of these interesting derivatives are in progress.

EXPERIMENTAL

Owing to the hydrolizable nature of bismuth halides, precautions were taken to exclude moisture during the course of all the experimental manipulations. Solvents [benzene, carbon tetrachloride, chloroform, light petroleum, acetonitrile and alcohols (ethanol, n-propanol, i-propanol and i-butanol)] were dried by standard methods before use. Dialkyldithiophosphoric acids²²⁻²³ and their sodium³ and ammonium²³ salts were prepared by methods reported earlier. Bismuth trichloride was prepared by passing chlorine gas through a boiling solution of BiOCl in conc. hydrochloric acid and simultaneously distilling the volatile solvents. The solid mass so obtained was sublimed under reduced pressure to yield bismuth trichloride as a white crystalline solid.

Sulphur was estimated gravimetrically as barium sulphate.⁵ Bismuth was estimated²⁶ by titrating against standard EDTA solution using xylenol orange as indicator. Molecular weights were determined cryoscopically in freezing and evullioscopically in boiling benzene (for only a few derivatives). IR spectra were recorded as Nujol mulls using CsI cells on a Perkin-Elmer 557 spectrometer in the range 4000–200 cm⁻¹. ¹H and ³¹P NMR spectra in CCl₄ and CDCl₃ solutions were recorded using tetramethylsilane and H₃PO₄ standards respectively.

General methods of synthesis of various dialkyldithiophosphate derivatives of bismuth

(1) Reaction of bismuth trichloride with dialkyldithiophosphoric acids or their sodium or ammonium salts in 1:3 molar ratio. On mixing bismuth trichloride (prepared in situ by dissolving BiOCl or Bi₂O₃ in dilute hydrochloric acid) and alcoholic solution of appropriate amount of dialkyldithiophosphoric acid (or the sodium or ammonium salt) an exothermic reaction took place with the precipitation of yellow crystalline solid. The precipitate was washed thoroughly with cold water and further purified by crystallization from aqueous alcohol or isopropanol.

In the case of corresponding normal propyl derivative which is low melting solid the reaction mixture was cooled by placing it in ice and the precipitate was washed with ice cold water.

- (2) Reaction between bismuth trichloride and sodium diisopropyldithiophosphate in 1:2 and 1:1 molar ratio. To bismuth trichloride dissolved in acetonitrile/benzene mixture was added sodium diisopropyldithiophosphate in 1:2 or 1:1 molar ratio and the contents were heated for about one hour at 50-60°C. Precipitated sodium chloride was removed by filtration. On removing the solvent from the filtrate the desired mixed chloride diisopropyldithiophosphate was obtained, which was further purified by crystallization from acetonitrile solution.
- (3) Reaction between bismuth trichloride and bismuth tris(dialkyldithiophosphates) in 1:2 and 2:1 molar ratio. Mixture of bismuth trichloride and bismuth tris(dialkyldithiophosphate) in 1:2 or 2:1 molar ratio in acetonitrile was heated at 50-60°C for one hour and the solvent was removed under reduced pressure giving the desired product.
- (4) Reaction of bismuth tris(diisopropyldithiophosphate) with bromine in 2:1 molar ratio. Disappearance of the colour of bromine was observed on mixing the carbon tetrachloride solutions of bromine (0.35 g; 2.19 mmols) and bismuth tris(diisopropyldithiophosphate) (3.74 g; 4.41 mmole). Solvent was removed under reduced pressure and the yellow solid so obtained was washed three times with light petroleum (b.p., 60-80°C) (taking about 10 ml of the solvent each time). The residue monobromobismuth bis(diisopropyldithiophosphate) (2.25 g., 71%) was finally dried under reduced pressure. The compound was recrystallized from acetonitrile solution.

(5) Reaction of bismuth tris(diisopropyldithiophosphate) with iodine in 2:1 molar ratio. The benzene solutions of bismuth tris(diisopropyldithiophosphate) (3.13 g., 3.69 mmole) and iodine (0.47 g; 1.84 mmole) were mixed and stirred for half an hour. The solution was concentrated to about 20 ml by removing the solvent in vacuo and about 20 ml light petroleum (b.p., 60-80°C) was added. The mixture was left overnight when brown crystals were separated (yield 1.24 g., 44%).

ACKNOWLEDGMENT

One of the authors (H. P. S. Chauhan) is thankful to the University Grants Commission, New Delhi for the award of a Senior Research Fellowship under the Special Assistance Programme.

REFERENCES AND NOTES

- 1. J. R. Wasson, G. M. Woltermann and H. J. Stoklosa, Topics in Current Chemistry, 35, 65 (1973).
- S. L. Lawton, C. J. Fuhrmeister, R. G. Hass, C. S. Jarman and F. G. Lothmeyer, *Inorg. Chem.*, 13, 135 (1974).
- H. P. S. Chauhan, G. Srivastava and R. C. Mehrotra, Synth. React. Inorg. Met. Org. Chem., 11, 565
 (1981).
- 4. P. S. Shetty and Q. Fernando, J. Amer. Chem. Soc., 92, 3964 (1970).
- 5. B. P. Singh, G. Srivastava and R. C. Mehrotra, J. Organomet. Chem., 171, 35 (1979).
- J. L. Lefferts, K. C. Molloy, J. J. Zuckerman, I. Haiduc, C. Guta and D. Ruse, *Inorg. Chem.*, 19, 1662 (1980).
- 7. D. Coucouvanis, Progr. Inorg. Chem., 11, 233 (1970).
- 8. D. Coucouvanis, Progr. Inorg. Chem., 26, 301 (1979).
- I. S. Levin, Yu. M. Yukhin, İ. A. Bykhovskaya, I. A. Vorsina and V. V. Sergeeva, Ser. Khim. Nauk, 5, 83 (1973); Chem. Abstr., 80, 7593 (1974).
- 10. D. M. Adams and J. B. Cornell, J. Chem. Soc. A, 1299 (1968).
- 11. T. P. Eremeeva and I. A. Vorsina, Ser. Khim. Nauk, 3, 24 (1976); Chem. Abstr., 85, 101538 (1976).
- E. K. Zhumadilov, E. I. Markova and V. I. Nefedov, Koord. Khim., 4, 997 (1978); Chem. Abstr., 89, 138095 (1978).
- A. I. Busev and M. I. Ivanyutin, Trudy Komissii Anal. Khim., Akad. Nauk S.S.S.R., Inst. Geokhim. i. Anal. Khim., 11, 172 (1960); Chem. Abstr., 55, 24381 (1961).
- A. I. Busev and A. K. Ponova, Dobl. Bolg. Akad. Nauk, 27, 1243 (1974); Chem. Abstr., 82, 67857 (1975).
- A. Shishkov and D. Atanasova, Nauchni Tr. Plovdivski Univ., 13, 209 (1975); Chem. Abstr., 89, 36020 (1978).
- 16. H. P. S. Chauhan, G. Srivastava and R. C. Mehrotra, Polyhedron 2, 359 (1983).
- 17. G. E. Manoussakis, C. A. Tsipis and C. C. Hadjikostas, Can. J. Chem., 53, 1530 (1975).
- 18. C. Preti, G. Tosi and P. Zannini, J. Mol. Struct., 53, 35 (1979).
- J. A. Cras, P. J. H. A. M. Van de Leemput, J. Willemse and W. P. Bosman, Recl. Trav. Chim. Pays-Bas, 96, 78 (1977).
- 20. D. E. C. Corbridge, "Topics in Phosphorus Chemistry," 6, 235 (1969).
- 21. C. Glidewell, Inorg. Chim. Acta, 25, 159 (1977).
- 22. J. H. Fletcher, J. C. Hamilton, I. Hechenbleikner, E. I. Hoegberg, B. J. Sertl. and J. T. Cassaday, J. Amer. Chem. Soc., 72, 2461 (1950).
- 23. R. F. Makens, H. H. Vaughan and R. R. Chelberg, Anal. Chem., 27, 1062 (1955).
- 24. V. P. Wystrach, E. O. Hook and G. L. M. Christopher, J. Org. Chem., 21, 705 (1956).
- 25. G. H. Sin and S. G. Ryom, Hwahak Kwa Hwahak Kongop, 17, 334 (1974); Chem. Abstr., 82, 124652 (1975)
- 26. A. I. Vogel, "Quantitative Inorganic Analysis," III Ed., Longman (1961).